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Abstract—Parallel file system (PFS) is commonly used in high-end computing systems. With the emergence of solid state drives
(SSDs), hybrid PFS, which consists of both HDD and SSD servers, provides a practical /O system solution for data-intensive
applications. However, most existing data layout schemes are inefficient for hybrid PFS due to their unawareness of server
heterogeneities and workload changes in different parts of a file. In this study, we propose a heterogeneity-aware region-level data
layout scheme, HARL, to improve the data distribution of a hybrid PFS. HARL first divides a file into fine-grained, varying sized regions
according to the workload features of an application, then determines appropriate file stripe sizes on servers for each region based on
the performance of heterogeneous servers. Furthermore, to further improve the performance of a hybrid PFS, we propose a dynamic
region-level layout scheme, HARL-D, which creates multiple replicas for each region and redirects file requests to the proper replicas
with the lowest access costs at the runtime. Experimental results of representative benchmarks and a real application show that HARL
can greatly improve I/O system performance, and demonstrate the advantages of HARL-D over HARL.

Index Terms—~Parallel I/O System; Parallel File System; Solid State Drive; Data Layout; Hybrid Parallel File System

1 INTRODUCTION

ANY large-scale applications are becoming data-
M intensive, and I/O performance is turned out to be
the bottleneck of computer systems. To tackle this chal-
lenge, parallel file systems (PFSs), such as OrangeFS [1],
Lustre [2], GPFS [3] and PanFS [4], is often used to
form the base of high-performance computer systems.
By serving a client request concurrently from multiple
file servers, PFSs can dramatically improve the aggregate
I/0 bandwidth of underlying storage systems. However,
a frustrating aspect of PFSs is that their common-case
performance is often worse than their reported peak
performance [5], [6].

The new storage technologies, such as flash-based
solid state drives (SSD), provide a possible alternative
solution for I/O system design. Unlike traditional HDDs,
SSDs are composed of semiconductor chips, and thus
provide higher I/O performance [7]. Although having
performance advantage over HDDs, SSDs bring cost con-
cerns when they are used completely to replace HDDs in
a large cluster. Thus, a hybrid PFS, which consists of both
HDD servers (HServer) and SSD servers (SServer), is
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more practical for HPC systems under a limited storage
budget [8], [5].

Although hybrid PFSs are promising, their efficiency
relies on an efficient data layout scheme, an algorithm
defining how a file’s data is distributed on available
storage servers. Currently, most existing layout schemes
distribute all file data across multiple servers with a
fixed-size stripe [6], as shown in Figure 2a. This can
provide concurrent data access from multiple servers
and come with even data placement on each server.
While these schemes are widely used and simple to
implement, they are typically designed for PFSs with
homogeneous servers. When applied to hybrid PFSs,
these schemes would raise the following challenges.

First, the performance gap between HServers and
SServers can significantly degrade the performance of
PFESs. SServers always have higher performance than
HServers, thus they usually require less I/O time to
complete the same amount of data accesses. However,
current layout schemes generally assign identical stripes
to both HServers and SServers, leading to severe load
imbalance among heterogeneous servers. To illustrate
this issue, we ran IOR [9] with 512KB request size and
16 processes on a hybrid OrangeFS file system with the
default layout (Stripe size is 64KB). Figure 1a shows the
I/O time on each server, normalized to the minimum
of all servers. We can observe that the slow HServers
(Server 1-6) take roughly 300% I/O time compared with
fast SServers (Server 7-8), which means that the potential
of the high-performance SServers are not fully underuti-
lized.

Second, complex 1/O patterns may also compromise
the efficiency of 1/O systems. Current layout schemes
often adopt a fixed-size stripe for the whole file [10],
however the I/O patterns of different parts of a file can
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Fig. 1: Performance statistics of IOR in a hybrid PFS. In (a), server 1-6 are HServers, and server 7-8 are SServers.
In (b), the legend “#K” denotes the data layout with a fixed-size stripe of #KB on each server.

be totally different [10], [11]: request sizes can be large at
one file chunk but small at another; request types can be
read operation in one I/O phase but write in another.
As a data layout is only efficient for a certain type of
workloads, such file-level static striping methods may
not adapt to the workload changes. Figure 1b shows
the performance of IOR with varied request sizes from
128KB to 2048KB under fixed stripe sizes from 16KB to
2MB. We can see that there is a huge variation in 1/0
bandwidth under different 1/O workloads and stripe
sizes.

In this paper, we propose a heterogeneity-aware
region-level data layout scheme, named HARL, to ad-
dress the challenges in the current data distribution
of PFSs. Since a fixed-size stripe is sub-optimal for
either heterogeneous servers in the storage system or
applications with complex I/O patterns, HARL relies
on a storage and application-aware allocation scheme
to determine the optimal file stripe sizes on heteroge-
neous servers. More specifically, HARL first divides a
file into fine-grained regions according to the changes
of application’s I/O workload; then, HARL assigns ap-
propriate file stripe sizes to both HDD and SSD servers
based on their storage performance for each file region.
It essentially represents a promotion from the tradi-
tional one dimensional fixed-size stripe layout to a two-
dimensional varied-size stripe layout. In this way, HARL
can significantly speeds up I/O system performance by
mitigating load imbalance among heterogeneous servers
and increasing I/O efficiency of data accesses in each file
region.

Since a static data layout scheme is not the most
efficient way to serve varying data accesses, we propose
HARL-D, a dynamic data layout scheme that leverages
data replication to further improve the performance of
a hybrid PFS. For each file region, HARL-D creates
multiple replicas, each with optimized stripe sizes on
HServers and SServers. By redirecting each file request
to the most appropriate replica, HARL-D can further
improve the overall I/O performance. As opposed to
the static data layout scheme (HARL) in our conference
version [12], whose stripe sizes are immutable after the
initial creation, such a dynamic policy is more flexible to

adapt to the varied data accesses at runtime.

Notably, HARL is transparent to applications, as such
it requires no modifications to the applications and can
be integrated with any hybrid PFS in a simple way. In
summary, this study makes the following contributions.

o A mathematical cost model, which considers I/O
patterns, system architecture, network overhead,
storage performance and data layout characteristics,
is introduced to evaluate the data access time of one
file request in a hybrid PFS.

o A static region-level data layout scheme (HARL),
which logically divides a file into regions and then
optimizes the stripe sizes on HServers and SServers
for each region based on the cost model, is presented
to optimize the performance of a hybrid PFS.

o A dynamic region-level data layout scheme (HARL-
D), which creates multiple replicas for each file
region and redirects file requests to the preferable
replica with the lowest access cost, is described to
further improve the performance of a hybrid PFS.

» A prototype of the proposed data layout scheme is
implemented and integrated into MPICH2 [13]. Ex-
perimental results with representative benchmarks
and an application show that HARL can signifi-
cantly improve the I/O throughput of a hybrid PFS,
and demonstrate the advantages of HARL-D over
HARL.

The reminder of this paper is organized as follows.
Section 2 discusses the related work. The static and
dynamic region-level data layout scheme are described
in section 3 and section 4. Section 5 presents the per-
formance evaluation with commonly used benchmarks.
Finally, the conclusions are summarized in section 6.

2 RELATED WORK

In this section we briefly discuss some related work on
improving the performance of parallel I/O systems from
three aspects.

I/O Access Reorganization: A great deal of research
has focused on reorganizing 1/O accesses at the par-
allel I/O middleware layer. For example, instead of
accessing multiple small, noncontiguous requests, data
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sieving [14] applies the strategy of accessing a con-
tiguous chunk created by gathering the noncontiguous
requests. Datatype 1/0 [15] and List I/O techniques [16]
allow noncontiguous 1/O requests to be converted into
a single I/O request, thereby limiting the number of
total requests. Collective 1/O [14] also optimizes 1/O
performance by rearranging 1/0 accesses into a larger
contiguous request, but it considers multiple processes
of a parallel program instead of an individual process.
Two-phase 1/0 [17] is one of the implementations of
collective I/O operations. It consists of two main phases:
shuffle phase and I/O phase. For write optimization,
PLFS [18] redirects multiple parallel requests to a set
of efficiently reorganized log-formatted files to generate
more sequential write requests, but the read performance
of these files may not be ideal due to the inevitable data
restructuring.

Data Layout in HDD-based File Systems: Parallel file
systems support different data layout strategies, which
allow for numerous data layout optimization methods.
Several techniques, including data partition [19], [20],
data migration [21], and data replication [6], [22], are ap-
plied to optimize data layouts depending on I/O work-
loads. Segment-level layout scheme logically divides a
file to several parts and appoints an optimal stripe size
for each part [10]. However, it only considers appli-
cation heterogeneity, and thus it could be potentially
used in conjunction with our proposed solution. Another
methodology, server-level adaptive layout strategy, se-
lects different stripe sizes depending upon the type of
the file server [23]. PARLO is designed for accelerating
queries on scientific datasets by applying user specified
optimizations [24]. AdaptRaid confronts load imbalance
in heterogeneous disk arrays [25] using an adaptive
number of blocks, which cannot be implemented in PFSs.

Data Layout in SSD-based File Systems: SSDs are
commonly integrated into parallel file systems due to
their performance benefits. A popular method is to use
SSDs as a cache of traditional HDDs, e.g. Sievestore [26]
and iBridge [27]. Another widely used approach is
to utilize SSDs as a part of data storage, such as I-
CASH [28] and Hystor [29]. Wu et al. [30] discusses
the data placement and scheduling trade-offs for hybrid
storage. Although effective, the vast majority of research
is focused on a single file server.

Recently a great of work paid more attention on the
data layouts of multiple heterogeneous servers. S4D-
Cache [5], [31] uses all SSD-based file servers as a cache
and selectively caches performance-critical data on these
high performance servers. CARL [32] selects and places
file regions with high access costs onto SSD-based file
servers at the I/O middleware layer, but the region can-
not be placed onto both SSDs and HDDs. PADP [33] and
PSA [34], [35] employ stripe size variation to improve the
performance of hybrid PFSs. HAS [36], [37] adaptively
selects the optimal data layout for heterogeneous parallel
file systems with specific access patterns.

The above mentioned techniques are effective in im-
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Fig. 2: Two data layout schemes in a hybrid parallel
file system. This figure shows how a file’s data are
distributed on HServers and SServers, focusing on the
stripe size configuration. The height of the rectangle on
each server represents the stripe size assigned to them.
While case (a) uses a fixed-size stripe for each server
within the whole file, case (b) divides a file into multiple
regions and uses varied-size stripes for HServers and
SServers to distribute data in each region.

proving the performance of PFSs. However, there is
little effort devoted to data layout considering both
heterogeneous servers in a hybrid PFS and complex I/0O
workloads at different part of a file. Recent work method
to overcome such challenges in a hybrid PFS. However,
it relies on a prior knowledge of access patterns of
application. As opposed to this, this study uses a holistic
adaptive file stripe optimization method to address all
these issues.

3 HETEROGENEITY-AWARE REGION-LEVEL

DATA LAYOUT
3.1 Overview of HARL

The proposed data layout scheme, HARL, aims to op-
timize the hybrid PFS layout by using varied-size file
stripes instead of fixed size. To accommodate both het-
erogeneous servers and complex I/O workloads, HARL
adopts the idea of “divide and conquer” to achieve the
optimal data layout. First, it divides a large file into
several small regions according to the I/O workloads
such that each region has more similar access patterns.
Then, HARL determines the appropriate file stripe sizes
on heterogeneous servers based on their storage perfor-
mance for each region.

Figure 2b illustrates the idea of the heterogeneity-
aware region-level data layout scheme. In this example,
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Fig. 3: The procedure for HARL scheme

HARL divides a file into three adjacent regions and
assigns different stripe sizes on HServers and SServers
for each region. Specially, since SServers have higher
I/O performance, SServers are usually allocated with
larger stripe sizes than HServers in each region, so
that each server can complete their I/O requests near-
simultaneously. Compared with the traditional layout
(Figure 2a), HARL is a fine-grained, adaptive data layout
scheme, which can significantly alleviate the load im-
balance among heterogeneous servers and improve the
hybrid PFS performance.

To obtain the optimal layout scheme, one needs to
rely on a prior knowledge of the data access patterns.
Fortunately, many data-intensive applications have pre-
dictable I/O patterns [19], [38], [39]. For example, the
BTIO application [40], an I/O kernel responsible for solv-
ing block-tridiagonal matrices on a three dimensional
array, has this feature. For BTIO, once the size of the
array, the number of time steps, the write interval, and
the number of processes are given, the I/O behaviors
can be accurately predicted before the program executes.
Since the program often run multiple times and these
patterns do not fluctuate significantly, it provides an
opportunity for HARL to achieve the optimal data layout
based on its I/O behavior analysis.

Figure 3 shows the procedure of HARL, which in-
cludes three phases. In the Tracing Phase, the runtime
statistics of data accesses are collected into a trace file
during the application’s first execution. In the Analysis
Phase, by analyzing the I/O trace, the large file is divided
into different regions according to the application’s I/O
characteristics, then each region’s stripe sizes are deter-
mined based on a data access cost model. In the Placing
Phase, the file is placed on the underlying heterogeneous
servers at runtime with the optimal file stripes obtained
in the Analysis Phase. Through these three phases, HARL
can largely improve the application’s I/O performance
in subsequent runs.

3.2

A trace collector is responsible for collecting runtime file
access information of parallel applications. While there
are some techniques and tools that can be used for

/0 Trace Collection

data analysis, we use IOSIG, which is an 1/O pattern
collection and analysis tool developed in our previous
work [41], to capture the information required by HARL.
IOSIG is a pluggable library of MPI-1O, which supports
MPI-IO and standard POSIX IO interfaces. IOSIG can
help to gather all the information of file operations,
including file access type, operation time, and other
process related data. After running the applications with
the trace collector, we can get process ID, MPI rank, file
descriptor, type of operation, offset, request size, and
time stamp information. To facilitate the region division
and guide the optimal data layout, the collector sorts all
file read and write requests in ascending order in terms
of their offsets.

3.3 File Region Division

Since fixed stripe sizes on servers are unable to provide
optimal performance for the whole file, as discussed in
Section 1, HARL divides a file into fine-grained regions
and applies special stripe size optimization for each
region. One may logically divide the address space of
a file into regions by a fixed chunk size (e.g. 64MB or
128MB). While this method is simple, it is difficult to
select a proper region size that fits diverse I/O patterns
in a real system. In contrast, HARL adopts a varied-size
region division method, as shown in Algorithm 1.

Algorithm 1: File Region Division Algorithm

Input : Sizes of file requests: 7o, ..., 7n—1; Offset of file
requests: og, ..., 0n—1
Output: Offset of each file region Oy, ...
request size for each file region: Ao, ...
1 sum =0 ; cv_prev =0; reg =0 /*region #/ ;
2 reg_init = 0 /*The first request served by this region */;
3 fori=0;i < n;i++ do

,Om—1 ; Average
7A'm—1

4 sum+ = ry;
5 avg = % ;
1
6 std = > (rk —avg)?/(i —reg_init + 1) ;
k=reg_init
7 cv_new = std/avg;
8 if (100 * |cv_new — cv_prev|)/cv_prev < threshold
then
9 | cv_prev = cv_new ;
10 else
1 sum = 0 /*Restart with new CV */;
12 cv_prev =0 ;
13 /* Set offset and average request size in region:
reg */ ;
14 O'reg = Oreg_init ;
15 Apeg = avg ;
16 reg_init = i + 1 /*The first request served for
next region will be ¢ +1 */;
17 /*Created region for next region */;
18 reg + + ;
19 end
20 end

The algorithm’s goal is to identify continuous file
chunk accessed with similar I/O patterns, so that a given
data layout may benefit more I/O requests. Starting from
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file offset 0, the algorithm uses average request size as
a common feature to find the proper delimiting points.
It reads the first two entries of the requested size from
the trace file and calculates the coefficient of variation
(CV), the result of dividing the standard deviation by the
average request size in the current sample. It continually
adds the next request and calculates the CV until the
trace ends. If the new CV value falls close to the previous
one, namely, the percentage difference between the new
CV value and the previous one is less than 100% (line
9), it continues adding the next entry and repeats the
calculations. Otherwise, it logs the offset, creates another
delimiting point to start a new region, and restarts
calculations with a new CV. As a normalized measure
of dispersion of data distribution, CV is very sensitive
to changes in the average request size and allows us to
detect the point where the application changes the 1/0O
behavior. At the end, the algorithm returns a list of file
regions with their average request sizes.

One potential issue is that this algorithm may gener-
ate too many regions, which leads to substantial extra
metadata management overhead and compromises the
final I/O performance. To overcome this issue, we limit
the number of created regions by adjusting the threshold
value. If the number of the regions is greater than the
number from the fixed-size region division, as in the
segment-level layout scheme [10], the threshold increases
from 100% to a higher value. This tuning can guarantee
that the number of the regions is bounded by the number
of the fixed-size region division method [10]. Using a
fixed region size of 64 MB as an example, the total
regions in a 10GB file requires at most 160 entries in
RST, an acceptable metadata overhead. Furthermore, we
combine adjacent regions with the same stripe sizes to
reduce the total number of RST entries.

3.4 Access Cost Model

To obtain the optimal stripe size on each server for a
given file region, we introduce an analytical model to
evaluate the data access time of a file request in a hybrid
PFS. The model fully considers the application, the sys-
tem (architecture, network, and storage), and the layout
related characteristics in the data access procedure, and
the corresponding parameters are listed in Table 1.

Note that the storage parameters show distinct fea-
tures for heterogeneous servers. First, SServer has a
much smaller start up time and data transfer time than
HServer. This is because SServer does not involve slower
mechanical movements. Second, unlike HServer, SServer
usually shows different read and write performance be-
cause it requires time-consuming garbage collection and
wear leveling operations for writes [7]. While simple,
this model is sufficient for approximating the general
performance profile for heterogeneous servers, as shown
in our experiments.

The cost is defined as the I/O completion time of each
file request, and it includes three parts. The network

TABLE 1: Parameters in cost analysis model

Application Parameters
0 Offset of the file request
r Size of the file request
op Type of the file request (read or write)
Architecture Parameters
M Number of HDD servers (HServers)
N Number of SSD servers (SServers)
Network Parameters
Unit data network transfer time
Storage Parameters

~

ap™™ | Minimum startup time on HServer
ap'®® | Maximum startup time on HServer
h p

B Unit data transfer time on HServer

aly Minimum startup time for read on SServer
og™® | Maximum startup time for read on SServer

Bsr | Unit data transfer time for read on SServer
ami™ | Minimum startup time for write on SServer

e Maximum startup time for write on SServer

Bsw Unit data transfer time for write on SServer
Data Layout Parameters
Stripe size on HServer
B Stripe size on SServer

transfer time (T’y) is the data transfer time on network,
the storage startup time (7s) refers to the consumption
before data operations on storage devices, and the stor-
age transfer time (77) is the time spent on actual data
read /write operations.

As a file request is usually executed concurrently by
multiple sub-requests, the file request cost 1" is deter-
mined by the largest cost of its all sub-requests. Assume
the sub-requests are distributed on the m (m € [0, M])
HServers and the n (n € [0,N]) SServers, and the
maximal sub-request sizes on HServers and SServers are
sm and s,, respectively, then we can calculate the request
cost as follows.

Tx is related with the data size and the network
data transfer rate. It is determined by the maximal
network transfer cost of all sub-requests on HServers and
SServers. Thus

Tx = max{smt, spt} (1)

T is determined by the longest startup time on the
m + n servers. Let a denote the startup time in each
HServer, then the startup time of the m sub-requests
can be a variable X = max(ay, g, -, m), where a; (
1 < i <'m) has an independent identical distribution as
a. Assume « follows an uniform distribution on [a}]"",
ap*], then the probability function of « is P(a < z) =
(z — ag™) /(a"*® — i), where x € [a"", a"**], and
the probability density function of X is

m X (r — amin m—1 )
(awrgax _ OiLmi'rz)m 7042’”'” STS O['}T/‘I-T/ (2)
sr ST

fz) =

Hence, the startup time on the m HServers is

max

A,

mis m ; i
Ty = of(@)de = af™"+—m = (o — ™) (3)

min
X,
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with stripe sizes h and s.
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Fig. 4: Four typical cases of file sub-request distribution
on servers. (a): Both beginning and ending sub-requests
are located on HServers; (b): Beginning sub-request is
on HServers but ending sub-request is on SServers; (c):
Beginning sub-request is on SServers but ending sub-
request is on HServers; (d): Both beginning and ending
sub-requests are on SServers.

Similarly, the startup time for read sub-requests on the
n SServers is

n

4

n+1 @)

Based on Equation (3) and (4), the overall startup time
for a file read request is

Tsr = max{T};, 75}

max
ST

S _ _min min
Ts’r - asr + )

ST

(« -«

(5)

Tr is also determined by the maximal storage transfer
time of all the sub-requests. For a read request, it can be
calculated as

(6)

Based on Equation (1), (5) and (6), the overall cost of
a file read request is

TTR = max{smﬁh, Snﬂsr}

T=Tx +Tsgr+Trr ()

The Equations (5), (6) depict the cost for reads, startup
and transfer time for writes (Tsyy and Try) will be
similar except we exchange the read parameters with
write. Thus the overall cost of a write request is

T=Tx+Tsw + Trw (8)

From above equations, we can see that 7" depends on
four parameters: s,,, s,, m and n, which can be calcu-
lated according to the stripe sizes i and s. We assume the
file data are distributed from the Oth to the (M+N-1)th
server in a round-robin way, and let S = M xh+ N x s,
rp = |o/S], re = |(0+7)/S], I, = 0o—r,*S, and
le = (0+r)—1r.% S, then the server number of the
beginning and ending sub-requests are n, = (I, < M =
R)?|lb/h) = [y — M * h)/s| + M, ne = (le < M % h)?|le/h] :
L(le — M xh)/s] + M, the size of the beginning and ending
fragment are s, = (I, < M*h)?|h—1,%h] : h—(le— M xh)%s,
Se = (le < M xh)?|h —1.%h] : s — (I. — M * h)%s. Based on
the locations where the file request begins and ends, the
sub-request distributions fall into four cases, as shown

in Figure 4. Due to space limitation, we only describe
how to calculate these parameters for case (a) where
the request begins and ends at certain HServers. Let
Ap=Tc—Tp, Ac= ne—ny, then the four critical parameters
are calculated as in Figure 5. By following the same
arguments, we can derive the parameters for other cases.

From the cost model, one can observe that the access
time of a file request can be significantly impacted by
the server stripe size h and s, motivating us to optimize
them to improve I/O performance.

3.5 Stripe Sizes Determination

Based on the above per-file-request model, HARL uses
a heuristic iterative algorithm to find the optimal stripe
sizes on HServers and SServers for each region. The goal
is to minimize the data access cost of all file requests in
that region instead of a single request.

Algorithm 2: Region Stripe Size Determination

Input : File region: reg including file request
Ro, ..., Ry—1, Average request size R in Reg
Output: optimal stripe sizes: H for HServer, S for SServer
1 step <+ 4K B;
2 opt_cost <— oo;
3 for h < 0;h < R;h < h + step do
4 for s < h + step; s < R; s < s + step do
fori< 0;i < k;i<i+1do
Reg_cost + 0;
if operation_type(R;) = Read then
T; < Calculate cost of R; according to
Equation (7) ;
9 else
10 T; <+ Calculate cost of R; according to
‘ Equation (8) ;

® N9 o u

11 end

12 Reg_cost < Reg_cost + T;;
13 end

14 if Reg_cost < opt_cost then

15 opl_cost < Reg_cost;

16 H + h;

17 S+ s;

18 end

19 end

20 end

Algorithm 2 shows the procedure of determining the
optimal stripe sizes for each region. Starting from h
equaling 0, the loop iterates & in ‘step” increments while
h is less than R. We use the average request size R
because we use it to divide the region in Algorithm 1
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and it is a good metric to describe the common feature
of the workloads. The extreme configuration we do
consider is where h is R, which means dispatching the
file request data only on one HServer may obtain better
I/0 performance. In the second loop, s starts from a size
which is larger than i because this configuration can lead
to load balance among heterogeneous servers. We also
consider the extreme case where the requested data are
only placed on one SServer. For each pair of stripe sizes,
the loop iterates to calculate the total access cost of all
file requests in that region, according to the proposed
data access cost in Section 3.4. Note that the request cost
is accumulated based on the request type (line 9 and
12) since the read operations come with different perfor-
mance as the write operation. Finally, the pair of stripe
sizes leading to minimal region access cost (Reg_cost) is
chosen. The ‘step” value is 4KB (line 3), which can be
chosen by the user. Finer ‘step’ values result in more
precise h and s values, but with increased calculation
overhead. However, the computational overhead of this
algorithm is acceptable because the calculations are sim-
ple arithmetic operations that run off-line.

3.6 Static Region-Level Data Placement

To guide the data placement, the information of optimal
stripe sizes for each region is stored into a global region
stripe table (RST). Figure 6 shows an example of the
RST data structure. In this example, the file consists of
multiple regions, and the stripe sizes for the first three re-
gions are (16KB, 64KB), (36KB, 144KB), and (26KB, 80KB)
respectively. Although the metadata includes more in-
formation, its size is not too large because the number
of regions is limited in the region division algorithm in
Section 3.3. Moreover, if adjacent regions have the same
optimal stripe sizes, the two regions are combined into
a larger region. This can further reduce the metadata
management overhead.

RST
Region # | File_offset | HServer stripe size| SServer stripe size|
0 0 16KB 64KB
1 128MB 36KB 144K B
2 192MB 26KB 80KB

Fig. 6: Data structure of the RST table in HARL scheme

In the Placing Phase, the file is placed on the underlying
heterogeneous servers with optimal stripe sizes for each
fine-grained file region. A PFS commonly includes three
components. The file clients issue requests on behalf
the applications, the servers are responsible for storing
file data, and the metadata servers (MDS) contain the
description information of the files. Upon receiving a file
request, a client first contacts MDS to get the file’s meta-
data, then it interacts with servers directly. To perform
the optimal data placement, MDSs look up the RST table
according to the request’s offset and length, and return
this information to the client. Then, the client writes the

file data on each server with the optimal stripe sizes from
RST.

3.7 Implementation

The proposed layout scheme can be implemented either
in the PFS or I/O middleware layer. The former solution
requires specific file metadata communication between
clients and servers to support the region-level striping
strategy, which is not currently supported by PFSs. In
order to maintain its portability and achieve a simple
implementation, HARL is integrated into the I/O mid-
dleware layer, which lies above various PFSs.

We implement HARL within MPICH2 [13] that runs
on OrangeFS [1]. In the Analysis Phase, we use one file
server in the parallel file system to test the startup time
« and data transfer time 3 for HServers and SServers
with read/write patterns. These parameters can vary
with different I/O patterns. In addition, we use a pair
of nodes (one client node and one file server) to esti-
mate the network transfer time ¢. We repeat the tests
thousands of times (the number is configurable), and
then calculate their average values, which are used as
the parameter values.

In the Placing Phase, HARL logically maps a large
file into multiple OrangeFS files, each representing a
separate file region with similar I/O workloads. In
MPICH2, a region-to-file mapping table (R2F) is used to
record the translation from a logical file region to a
physical OrangeFS file. For each region, the data is
distributed on underlying servers with the optimal stripe
sizes stored in RST. This can be implemented by lever-
aging the existing varied-size striping mechanism in
OrangeFS. RST and R2F are stored in the same directory
as the applications, and are loaded when MPI_Init ()
is triggered and unloaded when MPI_Finalize () is
executed. Furthermore, the MPI_File_ read/write ()
(and other variants of read/write) are modified, so file
requests can be automatically forwarded to the files in
the PFSs with optimized stripe sizes.

4 DyYNAMIC REGION-LEVEL DATA LAYOUT
SCHEME

In the previous section, we described a static region-
level data layout in a hybrid PFS. By allocating opti-
mized stripe sizes for HServers and SServers, this layout
scheme is promising to decrease the overall data access
cost in each region. However, since a static layout is
usually favorable for a certain type of access patterns,
this static layout still can not reduce the data access
cost for each request with a various pattern, thus it is
not the most efficient way to serve all data accesses.
In a practical system, many applications have complex
access patterns, it is desirable to develop new data layout
schemes to further improve I/O performance.
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Fig. 7: The dynamic data layout scheme. Each region has
three replicas, each with a different stripe size pair (% and
s) on HServers and SServers.

41

To address the issue of the static data layout approach,
we propose a dynamic region-level data layout scheme
(HARL-D), which leverages data replication to further
improve parallel I/O performance at runtime. Since
a static layout is only favorable for a limited access
patterns, HARL-D creates multiple replicas for each
region. For each data access, the strategy dynamically
chooses the replica with the lowest access cost to serve
the request. Since each request is assigned to the best
fit replica, this replication-based dynamic data layout
strategy can serve various 1/O workloads with higher
performance.

For data replication, the first issue is how many repli-
cas (denoted by n) should be created for each region.
Although we could create a corresponding replica for
each access pattern to achieve perfect performance, it
may lead to unacceptable storage cost. For simplicity,
we make three replicas for each file region throughout
this paper (n = 3), as shown in Figure 7. Of course, one
can choose different number of replicas depending on
his performance and cost trade-offs.

The second issue is how to determine the optimal
layout policy for each replica. Obviously we cannot
further decrease the overall I/O cost if we create a replica
with a randomly chosen data layout (a pair of & and s).
To address this issue, we classify requests in a region
into n groups, each with similar access patterns, and then
create a replica for each group with an optimal layout
based on the representative access characteristics.

Inspired by the data clustering approach in statistics
domain [42], we try to find the centers of these groups
with an iterative refinement method. The detailed de-
scription of the algorithm is as shown in Algorithm 3,
where each request is characterized by the request size.
As such, all requests can be represented by a set of points
in a one-dimensional Euclidean Space. For any point
Py(x1) and Py(x2), their distance can be defined as

(«Tl - 1‘2)2 (9)

If the number of requests is less than or equal to n,

Idea of Dynamic Data Layout

[Py — Pof| =

Algorithm 3: Iterative Request Grouping

Input : Requests: R[1, 7] in each file region
Output: Group G1,G2,G3

1 if (i <n) then
2 for (Vi € [1,n]) do
3 | Py, < randomly selected R[t] ;
4 end
5 end
6 else
7 count + 0 ;
8 while (P,, is changed||count < 3) do
9 Gi <—arg1‘“girll{HPs,- — Py,ll};

J
10 Py, + 1 Z Ps. ;

|Gl pica
J

11 count + + ;
12 end
13 end

a randomly selected request point is assigned to P,
as a center of the i-th group. Otherwise, each request
point is assigned to group G; whose center is closest to
the request point. After all the request points have been
processed, the algorithm re-compute the new center for
each group. This procedure is repeated until P, is no
longer changed or three times at most.

Although the computational overhead of the algo-
rithm increases in proportion to the number of requests,
the request grouping is an off-line method and it only
runs once based on the I/O trace analysis, so the compu-
tation overhead in a practical HPC system is acceptable.

The optimal data layout policy (a pair of h and s)
for each replica is determined by the access pattern
of one center of the group, according to Algorithm 2
in previous Section 3.5. In this case, the input of the
algorithm is replaced by the requests in each group and
the average request size R is replaced by the request size
of the center point. Since file requests in each group have
closed access patterns, the chosen (h,s) will have high
likelihoods to benefit from the given requests for that
group. During the subsequent run of the application, the
dynamic data layout scheme will estimate the request
access cost if it were redirected to the created replicas,
and assign it to the corresponding replica with lowest
access cost.

One concern is how to handle data writes in the sub-
sequent runs of the application. As it involves multiple
replicas, we use a lazy synchronization mechanism [38]
for data writes to improve performance and keep data
consistency. First, we write data to the selected replica.
Then, we apply lazy updates to synchronize data from
the first replica to other replicas. Hence, we only consider
the data access cost on the chosen replica for data writes,
and ignore the background data synchronization cost.

4.2

The selection of the replica for each file request is based
on the cost analysis with the proposed model. We made

Implementation
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Fig. 8: Throughputs of IOR with different layouts

a prototype of the cost estimation and dynamic data
replica selection by modifying several MPI-IO functions.

MPI_File_open: we open all corresponding replica
files, each with a different data layout.

MPI_File_read: we first calculate data access costs
for all replicas based on the proposed model, and then
choose the replica with the lowest cost to handle the
request. When data access is finished, the offsets of all
replicas are synchronized.

MPI_File_write: we handle the request on one
replica with the lowest cost, then insert the requests
of other replicas into a lazy synchronization queue. To
avoid interfering with the normal I/O operations, a
dedicated data synchronization thread is implemented
to conduct these lazy write requests in the queue. When
data access is finished, the offsets of all replicas are
synchronized.

MPI_File_seek: we calculate the offset and perform
seek operations in all opened replica files.

MPI_File_close: we synchronize data blocks for all
replicas and close all opened replica files.

5 PERFORMANCE EVALUATION
5.1

The experiments were conducted on a 65-node SUN
Fire Linux cluster. Each computing node has two AMD
Opteron(tm) processors, 8GB memory and a 250GB
HDD. The operating system is Ubuntu 13.04 and the
parallel file system is OrangeFS v2.8.6. All nodes are
equipped with Gigabit Ethernet interconnection, and
eight nodes are equipped with additional PCI-E X4
100GB SSD. Eight nodes are used as computing nodes,
eight as HServers, and eight as SServers. All SServers

Experimental Setup
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Fig. 9: Throughputs of IOR with various numbers of
processes

and HServers are accessed through one OrangeFS. By
default, six HServers and two SServers are used to build
the hybrid OrangeFS file system, and the file is striped
over the file servers in a round-robin fashion.

The widely-used parallel file system benchmark
IOR [9], BTIO [40], HPIO [43], and an application[11]
are used to test the hybrid file system performance.

5.2 Evaluation on Static Heterogeneity-Aware Data
Layout

In the experiments, we compare three data layout
schemes: the fixed-size stripe, the randomly-chosen
stripe and the proposed HARL scheme.

5.2.1 IOR Benchmark

Read and Write Results: The experiments are conducted
to compare the I/O performance of the hybrid PFS with
the proposed data layout scheme, HARL, and two other
strategies, which use a fixed-size or randomly chosen
file stripe. For the following tests, IOR benchmark runs
with 16 processes, and the request size is kept to 512KB
unless otherwise specified. Each process is responsible
for accessing its own 1/16 of a 16GB shared file and
continuously issues requests with random offsets.
Figure 8 demonstrates the I/O performance of the
hybrid file system with different layouts. In this figure,
layout ‘64KB’ means the stripe sizes are 64KB for all
file servers, and ‘36KB-148KB’ means the stripe size is
36KB for HServers and 148KB for SServers. The rest of
the layouts have similar meaning. It is observed that
the proposed heterogeneity-aware layout can achieve
I/0O performance improvement for both read and write
operations. While the performances of the fixed-size and
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randomly chosen stripe schemes vary with the adopted
stripe size, HARL provides the best performance. With
the optimal data layout of (32KB, 160KB) and (36KB,
148KB) for reads and writes respectively, HARL im-
proves the 1/O performance by 73.4% and 176.7% over
the default layout with a fixed-size stripe of 64KB.
Compared with other layouts with different but fixed-
size stripes, HARL improves the performance up to 138.6
% for reads and 177.6 % for writes. Compared with the
randomly chosen stripe strategies, the read performance
can improve to 154.5% and write performance can im-
prove to 215.4%. The experiments prove HARL performs
optimally and the stripe size determining formula is
effective.

Varying Number of Processes: The I/O performance
is also evaluated with a varied number of processes.
The IOR benchmark is executed with 8, 32, 128 and 256
processes, respectively, at a fixed request size of 512KB.
As shown in Figure 9, the results are similar to the
previous test. HARL improves the I/O performance for
both read and write operations. With different number
of processes, the I/O throughput increases to 144.1%,
141.8%, 202.7% and 274.1%, respectively, for reads com-
pared with layout schemes with a fixed-size stripe, and
116.4%, 182.7%, 192.8%, and 268.3% for writes, respec-
tively. Compared with the default layout (stripe size of
64KB), the read performance achieves a 144.1%, 138.1%,
182.3%, and 120.2% improvements, and write perfor-
mance achieves a 104.8%, 182.2%, 168.5%, and 235.1%
improvements. The results illustrate that HARL has high
scalability in terms of number of processes.

Varying Request Sizes: In Figure 10, the 1/O perfor-
mance is examined with varied request sizes. The IOR
benchmark is executed with request sizes of 128KB and
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1024KB. HARL improves read performance from 24.1%
to 325.0%, and write performance from 32.4% to 293.5%,
in comparison with conventional layout methods. In
terms of the default layout with 64KB stripe size, HARL
achieves an 80.1% improvement for read and 147.1% for
write operations. Compared with layout strategies which
use randomly varied stripe sizes, the read performance
boosts from 20.6% to 222.3%, and write performance
increases from 22.7% to 263.1%. When the request size
is 128KB, the optimal stripe size pair is (0KB, 64KB);
thus, distributing the file only on the two SServers offers
the highest I/O performance. When the request size is
1024KB, HARL distributes the file on both HServers and
SServers for higher I/O performance.

Varying Server Configurations: The I/O performance
is examined with varied ratios of HServers to SServers.
The OrangeFS is built using HServers and SServers
with the ratios of 7:1 and 2:6. The request size is kept
to 512KB. Figure 11 shows the average 1/O through-
put with different file server configurations. As the
results depict, HARL improves I/O performance for
both data reads and writes. Read performance increases
from 37.6% to 556.1%, and write performance improves
from 112.2% to 288.7% in comparison with other layout
methods. Compared with the default layout with a 64KB
stripe size, HARL achieves a 474.9% improvement for
reads and a 180.3% for writes. In the experiments, read
and write performance are improved as the number of
SServers increased. This is because the I/O performance
of SServers is efficiently utilized by the heterogeneity-
aware layout scheme. If the number of SServers is small,
HARL distributes the file on both SServers and HServers.
However, if the number of SServers is greater, the file is
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Fig. 12: 1/0O throughputs with non-uniform workloads

placed only on high-performance SServers.

Varying I/O Workloads: All the above results have
clearly confirmed the efficiency of HARL with uniform
I/0 workloads. In the experiments, we evaluated HARL
under varied I/O accesses. In order to simulate the
complicated non-uniform I/O workload, we modified
IOR benchmark to access a four-region data file. The size
of each region is 256MB, 1024MB, 2048MB and 4096MB,
respectively. For each region, IOR issues requests with
different request sizes. Figure 12 shows the average I/O
throughput of the hybrid PFS with different data layout
strategies. From the results, it can be easily observed
that HARL improves read performance from 59.4% to
265.8%, and write performance from 17.2% to 200.7%
compared with other layout methods. Compared with
the default data layout with a 64KB fixed stripe size,
HARL achieves a 255.6% improvement for reads and
116.9% for writes. The results indicate that the new
region-level layout scheme, which divides a file into
regions with similar workloads, is capable of increasing
performance at a large scale for complex 1/O work-
loads compared with the existing file-level data layout
schemes.

5.2.2 BTIO Benchmark

Apart from IOR benchmark above, we also use BTIO
benchmark to evaluate HARL. BTIO represents a typical
scientific application with interleaved intensive compu-
tation and read/write mixed I/O phases. BTIO uses
a Block-Tridiagonal (BT) partitioning pattern to solve
the three-dimensional compressible Navier-Stokes equa-
tions. We consider the Class A and full subtype BTIO
workload in the experiments. That is, BTIO writes and
reads a total size of 1.69GB data with collective I/O func-
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tions. We use 4, 16, and 64 compute processes since BTIO
requires a square number of processes. Output file is
striped across six HServers and two SServers. Figure 13
displays the aggregated 1/O throughputs. Compared
with the default layout with 64KB stripe size, HARL
achieves 163.5%, 116.9%, and 114.8% improvement with
4, 16, 64 processes, respectively. For other varied but
fixed-size striping methods, HARL also demonstrates
performance advantages.

5.2.3 Real Application

Finally, the proposed layout is evaluated with a real
application’s I/O trace, called "Anonymous LANL App
2’[11]. In this application, each process issues 1/O re-
quests in a non-uniform way at different parts of a
shared file. In the first part of the file, the request size of
each process is relatively small and barely varies. In the
following part of the file, request sizes are very small.
In the last part, each process issues requests of 131072
bytes and 131056 bytes iteratively. The data accesses of
this application were replayed according to the I/O trace
to simulate the same data access scenario. In the exper-
iment, eight nodes are clients, six nodes are HServers
and two nodes are SServers. For this application, HARL
recognizes three different regions where the application’s
I/0O behavior is similar. From Figure 14 we can conclude
that HARL can achieve 30.3% to 91.1% performance
improvement compared to data layouts with a fixed-size
stripe. The results indicate that the proposed adaptive
data layout is an effective performance optimization
strategy for applications with non-uniform I/O work-
loads.
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5.3 Evaluation on Dynamic Region-Level Data Lay-
out

We compare HARL-D with HARL to verify the need
of dynamic data layout when applications have various
patterns in different parts of a file.

5.3.1 The IOR Benchmark

We modify IOR benchmark to access a three-region data
file. Within each region, IOR issues requests with size
of 8KB, 64KB and 512KB. Figure 12 shows the average
I/0 throughput of the hybrid PFS with different data
layout strategies when we vary the process number from
8 to 256. From the results, it can be easily observed
that HARL-D improves read performance from 32.4%
to 37.9%, and write performance from 27.6% to 36.2%
compared with HARL. This is because HARL only pro-
vides one replicas for requests in each region, which can
not bring the best performance for all requests since they
have different request sizes. However, HARL-D provides
three replicas and it redirects requests to the proper
replicas with lowest access costs, thus it is capable of
further increasing performance of parallel PFSs.

5.3.2 The HPIO Benchmark

We also modify HPIO to simulate the complex access
patterns. HPIO can generate various data access patterns
by changing three parameters: region count, region spac-
ing, and region size. We set the region count to 2048 and
the region spacing to 0. We vary the region size with
256KB and 512KB. Fig. 16 shows I/O throughputs of
HPIO in terms of 16, 32, 64, and 128 processes. Similar
to the IOR tests, HARL-D shows better performance than
HARL, but the improvement is not as substantial as that
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Fig. 16: Throughputs of HPIO with various numbers of
processes.

of IOR. This is because the variation of access pattern
of HPIO is not as significant as that of IOR, which can
benefit more from multiple replicas. However, HARL-

D still exhibit moderate performance improvement over
HARL.

5.3.3 Real Application

We evaluate HARL-D with the real application "Anony-
mous LANL App 2'. Fig. 17 shows the performance
results. Similar to previous tests, we find that HARL-
D outperforms HARL: it obtains 12.8% performance
improvement compared to HARL. This indicates for
some data-intensive real applications, the dynamic data
layout scheme exhibits performance advantages over the
static data layout scheme.

5.4 Discussion

While making all file servers to complete their 1/O
accesses near-simultaneously, HARL would potentially
lead to more storage space consumption on SServers.

B HARL B HARL-D

1/0 throughput(MB/Sec)
1)
o

Fig. 17: Performance of LANL App2 under HARL-D.
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Fortunately, most file systems fail to fully utilize the stor-
age space in the underlying devices [44]. In a practical
system, this issue is not frequently encountered since the
capacities of current SSDs are increasing quickly. In the
worst case, where there is a possibility of an SServer
running out of space, we could use a data migration
method to balance the storage space by moving data
from SServers to HServers, so the remaining available
space on SServers can be guaranteed for new incoming
requests. This problem can also be addressed by selec-
tively storing users’ performance-critical data in a hybrid
PFS, while storing the remaining data in a traditional PFS
on HServers.

Although HARL is currently implemented for a single
application, it can be also applied to multiple applica-
tions with varied 1/O workloads. We identify the I/O ac-
cess patterns at the MPI file level, and do not distinguish
between requests coming from the same application or
from different applications. For the latter case, we may
apply our method to different workloads separately to
find their individual data access patterns.

6 CONCLUSIONS

We propose a heterogeneity-aware region-level (HARL)
data layout scheme, which distributes data across HDD
and SSD servers considering application workload and
server 1/O performance. HARL divides a file into fine-
grained regions according to I/O workloads, and adopts
varied stripe sizes on HServers and SServers for each
region based on the server performance. Furthermore,
we develop a dynamic data layout scheme (HARL-
D), which creates multiple replicas for each region and
redirects file requests to the proper replicas to reduce the
access cost at the runtime. In essence, HARL provides an
improved matching between the data access characteris-
tic of applications and the data handling capability of file
servers in a hybrid PFS. Experimental results show that
HARL significantly improves the performance of hybrid
PFESs over the fixed-size and randomly-chosen striping
methods: the I/O performance improves from 20.6% to
556.1% for reads and 22.7% to 288.7% for writes, and
demonstrates the advantages of HARL-D over HARL.

In the future, we will extend our cost model to ac-
commodate more than two server performance profiles.
Another direction is to explore on-line data layout and
data migration methods to make heterogeneous 1/0 sys-
tems more intelligent and efficient. Furthermore, we plan
to exploit the potential of our approach in distributed
systems, e.g., Hadoop and Spark.
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